Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A.-Qing Wu,^{a,b} Fa-Kun Zheng,^a Li-Zhen Cai,^a Guo-Cong Guo,^a* Jiang-Gao Mao^a and Jin-Shun Huang^a

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and ^bGraduate School, Chinese Academy of Sciences, Beijing 100039, People's Republic of China

Correspondence e-mail: gcguo@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.115 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

One-dimensional chain structure of *catena*-poly[[((1,10-phenanthroline)copper(II)]*µ*-dicyanamido] perchlorate]

The crystal structure of the title compound, $[Cu(C_{12}H_8N_2)-{N(CN)_2}](ClO_4)$, consists of zigzag chain $[Cu(phen)(dca)]_n^{n+}$ cations and $[ClO_4]^-$ anions (phen = 1,10-phenanthroline and dca = $[N(CN)_2]^-$). The Cu^{II} atom has a near square planar coordination environment with two N atoms of phen ligands and two N-terminal atoms of dca ligands. The complex forms a one-dimensional chain structure along the *c* axis, using dca as an end-to-end bridging ligand. The hydrogen-bonding interactions produce a three-dimensional network.

Received 19 March 2003 Accepted 2 April 2003 Online 23 April 2003

Comment

In recent years, metal-dicyanamide (dca, $[N(CN)_2]^{-}$) coordination chemistry has become a fast growing research field because of its interesting coordination and physical properties (Marshall et al., 2002; Shi et al., 2002; Brown & Manson, 2002). Since dicyanamide has three N-donor atoms, it can exhibit several possible coordination modes (Marshall et al., 2002; Shi et al., 2002). Complexes formulated as $[M(dca)_2]_n$ (M = Mn, Fe, Co, Ni, Cu, Zn, Ag, etc.) containing only dca have been synthesized; these are of a quite limited structural type (Batten et al., 1998, 1999; Jensen, Batten, Fallon, Moubaraki et al., 1999; Jensen et al., 2000; Kurmoo & Kepert, 1998; Manson, Lee et al., 1998; Britton, 1990). By introducing co-ligands that may be monodentate or bidentate ligands, such as pyridine, bipyridine, 1,10-phenanthroline, 2,2'-biimidazole etc., many complexes have been synthesized with various interesting structures (Manson, Incarvito et al., 1998; Manson et al., 1999; Jensen, Batten, Fallon, Hockless et al., 1999; Batten et al., 1999; Wang, Luo, Sun, Yan, Gao & Liao, 2000; Wang, Luo, Sun, Yan, Liao & Gao, 2000; Sun et al., 2000; Werff et al. 2001). As an extension of this research area, we have synthesized a new one-dimensional complex [Cu(1,10phen)(dca)](ClO₄), (I). Here we report the preparation and crystal structure of (I).

The coordination of the Cu atom in (I) is similar to that in the complex [Cu(dca)(MeCN)] reported by Batten *et al.* (2000). The Cu^{II} atom is coordinated by two terminal N atoms of two different [N(CN)₂]⁻ ligands [Cu1-N3 1.978 (2) Å and

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The cationic chain structure of the title complex, with displacement ellipsoids at the 30% probability level.

Figure 2

The three-dimensional framework of the complex formed through hydrogen-bond interactions. The hydrogen bonds are represented by dotted lines.

Cu1-N5ⁱ 1.948 (2) Å; symmetry code: (i) x, -y, $z - \frac{1}{2}$ and two N atoms of phen ligands [Cu1-N1 2.017 (2) Å and Cu1-N1 1.996 (2) A]. The Cu and four coordinating N atoms (N1, N2, N3 and N5) constitute a near square-planar geometry and deviate from the mean plane by 0.087, -0.323, 0.286, -0.302and 0.253 Å, respectively. The Cu-N distances are in good agreement with those found in the complexes reported by Wang, Luo, Sun, Yan, Gao & Liao (2000) and Potočňák et al. (1996). Each $[N(CN)_2]^-$ is coordinated to two metal atoms via the two nitrile N atoms. The $[N(CN)_2]^-$ ligands bridge end-toend the Cu^{II} atoms into a one-dimensional zigzag chain extended along the c axis, as shown in Fig. 1; between these chains the $[ClO_4]^-$ anions are located, as shown in Fig. 2. The parallel chains are further connected by C-H···O hydrogen bonds, involving three O atoms of the $[ClO_4]^-$ anion and C atoms of phen (Table 2). It is worth noting that the $[ClO_4]^$ anion is ordered due to the hydrogen-bond interactions.

Experimental

An aqueous solution of $\text{Cu}(\text{ClO}_4)_2$ (1*M*, 0.5 ml) and 4 ml of an aqueous solution of Na(dca) (1 mmol, 91 mg) were thoroughly mixed, then 10 ml of an ethanol solution of 1,10-phen (0.5 mmol, 99 mg) was added dropwise with stirring. The resulting mixture was filtered and the filtrate was left undisturbed at room temperature. Transparent green, needle-like crystals were obtained after a few days.

Crystal data

```
[Cu(C_2N_3)(C_{12}H_8N_2)](ClO_4)

M_r = 409.24

Monoclinic, Cc

a = 14.260 (5) Å

b = 9.660 (2) Å

c = 12.789 (5) Å

\beta = 120.878 (12)°

V = 1512.0 (9) Å<sup>3</sup>

Z = 4

Data collection

Rigaku Mercury CCD
```

diffractometry CCD diffractometer ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2002) $T_{min} = 0.774, T_{max} = 1.000$ 5925 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.115$ S = 1.052952 reflections 226 parameters H-atom parameters constrained reflections $\theta = 3.3-27.5^{\circ}$ $\mu = 1.65 \text{ mm}^{-1}$ T = 293 (2) KNeedle, green $0.50 \times 0.15 \times 0.10 \text{ mm}$ 2952 independent reflections 2571 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -18 \rightarrow 18$ $k = -12 \rightarrow 12$

 $D_x = 1.798 \text{ Mg m}^{-3}$

Cell parameters from 2248

Mo $K\alpha$ radiation

 $l = -16 \rightarrow 16$

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0654P)^2 \\ &+ 0.0356P] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{max} = 0.002 \\ \Delta\rho_{max} = 0.45 \ e \ \mathring{A}{}^{-3} \\ \Delta\rho_{min} = -0.27 \ e \ \mathring{A}{}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 1704 \ Friedel \ pairs \\ Flack \ parameter = 0.03 \ (2) \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Cu1-N5 ⁱ	1.9482 (19)	N5-Cu1 ⁱⁱ	1.9482 (19)
Cu1-N3	1.9778 (16)	N4-C14	1.307 (3)
Cu1-N2	1.9956 (17)	N4-C13	1.308 (3)
Cu1-N1	2.0170 (16)	N3-C13	1.124 (2)
N5-C14	1.132 (3)		
N5 ⁱ -Cu1-N3	94.43 (8)	O2-Cl1-O1	110.40 (13)
N5 ⁱ -Cu1-N2	168.11 (5)	O3-Cl1-O1	108.27 (11)
N3-Cu1-N2	92.88 (7)	C14-N5-Cu1 ⁱⁱ	169.85 (14)
N5 ⁱ -Cu1-N1	94.37 (7)	C14-N4-C13	123.37 (19)
N3-Cu1-N1	155.92 (5)	C13-N3-Cu1	165.54 (14)
N2-Cu1-N1	82.60 (7)	C1-N1-Cu1	129.50 (14)
O4-Cl1-O2	109.14 (12)	C12-N1-Cu1	111.90 (13)
O4-Cl1-O3	108.92 (11)	C10-N2-Cu1	129.69 (13)
O2-Cl1-O3	111.04 (13)	C11-N2-Cu1	112.34 (13)
04-Cl1-01	109.02 (13)	N5-C14-N4	171.13 (19)

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $x, -y, \frac{1}{2} + z$.

lable 2		
Hydrogen-bonding geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$C1-H1A\cdots O1^{iii}$	0.93	2.56	3.301 (4)	138			
$C6-H6A\cdots O2^{iv}$	0.93	2.56	3.368 (3)	146			
$C10-H10A\cdots O2^{v}$	0.93	2.39	3.193 (3)	145			
$C10-H10A\cdots O4^{vi}$	0.93	2.91	3.261 (3)	104			

Symmetry codes: (iii) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (iv) $x - 1, 1 - y, \frac{1}{2} + z$; (v) $x - 1, -y, \frac{1}{2} + z$; (vi) x - 1, y, z.

H atoms were positioned geometrically, assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms.

Data collection: *CrystalClear* (Rigaku, 2002); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*97 (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 20001007 and 20131020) and the Natural Sciences Foundation of the Chinese Academy of Sciences (KJCX2-H3) and Fujian Province (2000 F006).

References

- Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. & Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829–3835.
- Batten, S. R., Jensen, P., Kepert, C. J., Kurmoo, M., Moubaraki, B., Murray, K. S. & Price, D. J. (1999). J. Chem. Soc. Dalton Trans. pp. 2987–2997.
- Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Robson, R. (1998). *Chem. Commun.* pp. 439-440.
- Britton, D. (1990). Acta Cryst. C46, 2297–2299.
- Brown, C. M. & Manson, J. L. (2002). J. Am. Chem. Soc. 124, 12600-12605.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jensen, P., Batten, S. R., Fallon, G. D., Hockless, D. C. R., Moubaraki, B., Murray, K. S. & Robson, R. J. (1999). Solid State Chem. 45, 387–393.
- Jensen, P., Batten, S. R., Fallon, G. D., Moubaraki, B., Murray, K. S. & Price, D. J. (1999). Chem. Commun. pp. 177–178.

- Jensen, P., Price, D. J., Batten, S. R., Moubaraki, B. & Murray, K. S. (2000). Chem. Eur. J. 6, 3186–3195.
- Kurmoo, M. & Kepert, C. (1998). New J. Chem. pp. 1515-1524.
- Manson, J. L., Arif, A. M., Incarvito, C. D., Liable-Sands, L. M., Rheingold, A. L. & Miller, J. S. (1999). J. Solid State Chem. 145, 369–378.
- Manson, J. L., Incarvito, C. D., Rheingold, A, L. & Miller, J. S. (1998). J. Chem. Soc. Dalton Trans. pp. 3705–3706.
- Manson, J. L., Lee, D. W., Rheingold, A. L. & Miller, J. S. (1998). *Inorg. Chem.* 37, 5966–5967.
- Marshall, S. R., Incarvito, C. D., Shum, W. W., Rheingold, A. L. & Miller, J. S. (2002). Chem. Commun. pp. 3006–3007.
- Potočňák, I., Dunaj-Jurco, M., Miklos, D. & Jager, L. (1996). Acta Cryst. C52, 1653–1655.
- Rigaku (2002). CrystalClear. Version 1.35. Rigaku Molecular Structure Corporation, Utah, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Shi, Y. J., Chen, X. T., Li, Y. Z., Xue, Z. L. & You, X. Z. (2002). New J. Chem. 26, 1711–1713.
- Siemens (1995). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sun, B. W., Gao, S. Ma, B. Q. & Wang, Z. M. (2000). New J. Chem. 24, 953.Wang, Z. M., Luo, J., Sun, B, W., Yan, C. H., Gao, S. & Liao, C. S. (2000). Acta
- *Cryst.* C56, 786–788. Wang, Z. M., Luo, J., Sun, B, W., Yan, C. H., Liao, C. S. & Gao, S. (2000). *Acta Cryst.* C56, e242–e243.
- Werff, P. M. van der, Batten, S. R., Jensen, P., Moubaraki, B. & Murray, K. S. (2001). Inorg. Chem. 40, 1718–1722.